Evaluate
\left(\frac{y}{a}\right)^{4}
Differentiate w.r.t. a
-\frac{4y^{4}}{a^{5}}
Share
Copied to clipboard
\frac{3x^{-5}b^{8}}{7b^{-2}a^{7}}\times \frac{21x^{3}y^{4}}{9x^{-2}a^{-3}b^{10}}
Cancel out 5 in both numerator and denominator.
\frac{3x^{-5}b^{10}}{7a^{7}}\times \frac{21x^{3}y^{4}}{9x^{-2}a^{-3}b^{10}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3x^{-5}b^{10}}{7a^{7}}\times \frac{7x^{3}y^{4}}{3a^{-3}x^{-2}b^{10}}
Cancel out 3 in both numerator and denominator.
\frac{3x^{-5}b^{10}}{7a^{7}}\times \frac{7y^{4}x^{5}}{3a^{-3}b^{10}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3x^{-5}b^{10}\times 7y^{4}x^{5}}{7a^{7}\times 3a^{-3}b^{10}}
Multiply \frac{3x^{-5}b^{10}}{7a^{7}} times \frac{7y^{4}x^{5}}{3a^{-3}b^{10}} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{-5}y^{4}x^{5}}{a^{-3}a^{7}}
Cancel out 3\times 7b^{10} in both numerator and denominator.
\frac{y^{4}}{a^{-3}a^{7}}
Multiply x^{-5} and x^{5} to get 1.
\frac{y^{4}}{a^{4}}
To multiply powers of the same base, add their exponents. Add -3 and 7 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}