Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(15-8i\right)i}{5i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(15-8i\right)i}{-5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{15i-8i^{2}}{-5}
Multiply 15-8i times i.
\frac{15i-8\left(-1\right)}{-5}
By definition, i^{2} is -1.
\frac{8+15i}{-5}
Do the multiplications in 15i-8\left(-1\right). Reorder the terms.
-\frac{8}{5}-3i
Divide 8+15i by -5 to get -\frac{8}{5}-3i.
Re(\frac{\left(15-8i\right)i}{5i^{2}})
Multiply both numerator and denominator of \frac{15-8i}{5i} by imaginary unit i.
Re(\frac{\left(15-8i\right)i}{-5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{15i-8i^{2}}{-5})
Multiply 15-8i times i.
Re(\frac{15i-8\left(-1\right)}{-5})
By definition, i^{2} is -1.
Re(\frac{8+15i}{-5})
Do the multiplications in 15i-8\left(-1\right). Reorder the terms.
Re(-\frac{8}{5}-3i)
Divide 8+15i by -5 to get -\frac{8}{5}-3i.
-\frac{8}{5}
The real part of -\frac{8}{5}-3i is -\frac{8}{5}.