Solve for v
v=11
Share
Copied to clipboard
15\left(v+5\right)-20=20v
Multiply both sides of the equation by 60, the least common multiple of 60,3.
15v+75-20=20v
Use the distributive property to multiply 15 by v+5.
15v+55=20v
Subtract 20 from 75 to get 55.
15v+55-20v=0
Subtract 20v from both sides.
-5v+55=0
Combine 15v and -20v to get -5v.
-5v=-55
Subtract 55 from both sides. Anything subtracted from zero gives its negation.
v=\frac{-55}{-5}
Divide both sides by -5.
v=11
Divide -55 by -5 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}