\frac { 15 \pi } { 11 } \cdot r d \theta = \frac { \pi } { 11 }
Solve for d
d=\frac{1}{15r\theta }
\theta \neq 0\text{ and }r\neq 0
Solve for r
r=\frac{1}{15d\theta }
\theta \neq 0\text{ and }d\neq 0
Share
Copied to clipboard
15\pi rd\theta =\pi
Multiply both sides of the equation by 11.
15\pi dr\theta =\pi
Reorder the terms.
15\pi r\theta d=\pi
The equation is in standard form.
\frac{15\pi r\theta d}{15\pi r\theta }=\frac{\pi }{15\pi r\theta }
Divide both sides by 15\pi r\theta .
d=\frac{\pi }{15\pi r\theta }
Dividing by 15\pi r\theta undoes the multiplication by 15\pi r\theta .
d=\frac{1}{15r\theta }
Divide \pi by 15\pi r\theta .
15\pi rd\theta =\pi
Multiply both sides of the equation by 11.
15\pi dr\theta =\pi
Reorder the terms.
15\pi d\theta r=\pi
The equation is in standard form.
\frac{15\pi d\theta r}{15\pi d\theta }=\frac{\pi }{15\pi d\theta }
Divide both sides by 15\pi d\theta .
r=\frac{\pi }{15\pi d\theta }
Dividing by 15\pi d\theta undoes the multiplication by 15\pi d\theta .
r=\frac{1}{15d\theta }
Divide \pi by 15\pi d\theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}