Solve for x
x=\frac{\sqrt{625521}}{3}+187\approx 450.632951911
x=-\frac{\sqrt{625521}}{3}+187\approx -76.632951911
Graph
Share
Copied to clipboard
\left(x+70\right)\times 1480-x\times 148=3x\left(x+70\right)
Variable x cannot be equal to any of the values -70,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+70\right), the least common multiple of x,x+70.
1480x+103600-x\times 148=3x\left(x+70\right)
Use the distributive property to multiply x+70 by 1480.
1480x+103600-x\times 148=3x^{2}+210x
Use the distributive property to multiply 3x by x+70.
1480x+103600-x\times 148-3x^{2}=210x
Subtract 3x^{2} from both sides.
1480x+103600-x\times 148-3x^{2}-210x=0
Subtract 210x from both sides.
1270x+103600-x\times 148-3x^{2}=0
Combine 1480x and -210x to get 1270x.
1270x+103600-148x-3x^{2}=0
Multiply -1 and 148 to get -148.
1122x+103600-3x^{2}=0
Combine 1270x and -148x to get 1122x.
-3x^{2}+1122x+103600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1122±\sqrt{1122^{2}-4\left(-3\right)\times 103600}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 1122 for b, and 103600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1122±\sqrt{1258884-4\left(-3\right)\times 103600}}{2\left(-3\right)}
Square 1122.
x=\frac{-1122±\sqrt{1258884+12\times 103600}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-1122±\sqrt{1258884+1243200}}{2\left(-3\right)}
Multiply 12 times 103600.
x=\frac{-1122±\sqrt{2502084}}{2\left(-3\right)}
Add 1258884 to 1243200.
x=\frac{-1122±2\sqrt{625521}}{2\left(-3\right)}
Take the square root of 2502084.
x=\frac{-1122±2\sqrt{625521}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{625521}-1122}{-6}
Now solve the equation x=\frac{-1122±2\sqrt{625521}}{-6} when ± is plus. Add -1122 to 2\sqrt{625521}.
x=-\frac{\sqrt{625521}}{3}+187
Divide -1122+2\sqrt{625521} by -6.
x=\frac{-2\sqrt{625521}-1122}{-6}
Now solve the equation x=\frac{-1122±2\sqrt{625521}}{-6} when ± is minus. Subtract 2\sqrt{625521} from -1122.
x=\frac{\sqrt{625521}}{3}+187
Divide -1122-2\sqrt{625521} by -6.
x=-\frac{\sqrt{625521}}{3}+187 x=\frac{\sqrt{625521}}{3}+187
The equation is now solved.
\left(x+70\right)\times 1480-x\times 148=3x\left(x+70\right)
Variable x cannot be equal to any of the values -70,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+70\right), the least common multiple of x,x+70.
1480x+103600-x\times 148=3x\left(x+70\right)
Use the distributive property to multiply x+70 by 1480.
1480x+103600-x\times 148=3x^{2}+210x
Use the distributive property to multiply 3x by x+70.
1480x+103600-x\times 148-3x^{2}=210x
Subtract 3x^{2} from both sides.
1480x+103600-x\times 148-3x^{2}-210x=0
Subtract 210x from both sides.
1270x+103600-x\times 148-3x^{2}=0
Combine 1480x and -210x to get 1270x.
1270x-x\times 148-3x^{2}=-103600
Subtract 103600 from both sides. Anything subtracted from zero gives its negation.
1270x-148x-3x^{2}=-103600
Multiply -1 and 148 to get -148.
1122x-3x^{2}=-103600
Combine 1270x and -148x to get 1122x.
-3x^{2}+1122x=-103600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+1122x}{-3}=-\frac{103600}{-3}
Divide both sides by -3.
x^{2}+\frac{1122}{-3}x=-\frac{103600}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-374x=-\frac{103600}{-3}
Divide 1122 by -3.
x^{2}-374x=\frac{103600}{3}
Divide -103600 by -3.
x^{2}-374x+\left(-187\right)^{2}=\frac{103600}{3}+\left(-187\right)^{2}
Divide -374, the coefficient of the x term, by 2 to get -187. Then add the square of -187 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-374x+34969=\frac{103600}{3}+34969
Square -187.
x^{2}-374x+34969=\frac{208507}{3}
Add \frac{103600}{3} to 34969.
\left(x-187\right)^{2}=\frac{208507}{3}
Factor x^{2}-374x+34969. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-187\right)^{2}}=\sqrt{\frac{208507}{3}}
Take the square root of both sides of the equation.
x-187=\frac{\sqrt{625521}}{3} x-187=-\frac{\sqrt{625521}}{3}
Simplify.
x=\frac{\sqrt{625521}}{3}+187 x=-\frac{\sqrt{625521}}{3}+187
Add 187 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}