Evaluate
\frac{74}{59}\approx 1.254237288
Factor
\frac{2 \cdot 37}{59} = 1\frac{15}{59} = 1.2542372881355932
Share
Copied to clipboard
\begin{array}{l}\phantom{118)}\phantom{1}\\118\overline{)148}\\\end{array}
Use the 1^{st} digit 1 from dividend 148
\begin{array}{l}\phantom{118)}0\phantom{2}\\118\overline{)148}\\\end{array}
Since 1 is less than 118, use the next digit 4 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{118)}0\phantom{3}\\118\overline{)148}\\\end{array}
Use the 2^{nd} digit 4 from dividend 148
\begin{array}{l}\phantom{118)}00\phantom{4}\\118\overline{)148}\\\end{array}
Since 14 is less than 118, use the next digit 8 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{118)}00\phantom{5}\\118\overline{)148}\\\end{array}
Use the 3^{rd} digit 8 from dividend 148
\begin{array}{l}\phantom{118)}001\phantom{6}\\118\overline{)148}\\\phantom{118)}\underline{\phantom{}118\phantom{}}\\\phantom{118)9}30\\\end{array}
Find closest multiple of 118 to 148. We see that 1 \times 118 = 118 is the nearest. Now subtract 118 from 148 to get reminder 30. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }30
Since 30 is less than 118, stop the division. The reminder is 30. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}