Evaluate
1
Factor
1
Share
Copied to clipboard
\begin{array}{l}\phantom{1454)}\phantom{1}\\1454\overline{)1454}\\\end{array}
Use the 1^{st} digit 1 from dividend 1454
\begin{array}{l}\phantom{1454)}0\phantom{2}\\1454\overline{)1454}\\\end{array}
Since 1 is less than 1454, use the next digit 4 from dividend 1454 and add 0 to the quotient
\begin{array}{l}\phantom{1454)}0\phantom{3}\\1454\overline{)1454}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1454
\begin{array}{l}\phantom{1454)}00\phantom{4}\\1454\overline{)1454}\\\end{array}
Since 14 is less than 1454, use the next digit 5 from dividend 1454 and add 0 to the quotient
\begin{array}{l}\phantom{1454)}00\phantom{5}\\1454\overline{)1454}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1454
\begin{array}{l}\phantom{1454)}000\phantom{6}\\1454\overline{)1454}\\\end{array}
Since 145 is less than 1454, use the next digit 4 from dividend 1454 and add 0 to the quotient
\begin{array}{l}\phantom{1454)}000\phantom{7}\\1454\overline{)1454}\\\end{array}
Use the 4^{th} digit 4 from dividend 1454
\begin{array}{l}\phantom{1454)}0001\phantom{8}\\1454\overline{)1454}\\\phantom{1454)}\underline{\phantom{}1454\phantom{}}\\\phantom{1454)9999}0\\\end{array}
Find closest multiple of 1454 to 1454. We see that 1 \times 1454 = 1454 is the nearest. Now subtract 1454 from 1454 to get reminder 0. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }0
Since 0 is less than 1454, stop the division. The reminder is 0. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}