Evaluate
\frac{145}{68}\approx 2.132352941
Factor
\frac{5 \cdot 29}{2 ^ {2} \cdot 17} = 2\frac{9}{68} = 2.1323529411764706
Share
Copied to clipboard
\begin{array}{l}\phantom{68)}\phantom{1}\\68\overline{)145}\\\end{array}
Use the 1^{st} digit 1 from dividend 145
\begin{array}{l}\phantom{68)}0\phantom{2}\\68\overline{)145}\\\end{array}
Since 1 is less than 68, use the next digit 4 from dividend 145 and add 0 to the quotient
\begin{array}{l}\phantom{68)}0\phantom{3}\\68\overline{)145}\\\end{array}
Use the 2^{nd} digit 4 from dividend 145
\begin{array}{l}\phantom{68)}00\phantom{4}\\68\overline{)145}\\\end{array}
Since 14 is less than 68, use the next digit 5 from dividend 145 and add 0 to the quotient
\begin{array}{l}\phantom{68)}00\phantom{5}\\68\overline{)145}\\\end{array}
Use the 3^{rd} digit 5 from dividend 145
\begin{array}{l}\phantom{68)}002\phantom{6}\\68\overline{)145}\\\phantom{68)}\underline{\phantom{}136\phantom{}}\\\phantom{68)99}9\\\end{array}
Find closest multiple of 68 to 145. We see that 2 \times 68 = 136 is the nearest. Now subtract 136 from 145 to get reminder 9. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }9
Since 9 is less than 68, stop the division. The reminder is 9. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}