Solve for y
y=-2
y=2
y=6
y=-6
Graph
Share
Copied to clipboard
144+y^{2}y^{2}=40y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
144+y^{4}=40y^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
144+y^{4}-40y^{2}=0
Subtract 40y^{2} from both sides.
t^{2}-40t+144=0
Substitute t for y^{2}.
t=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 1\times 144}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -40 for b, and 144 for c in the quadratic formula.
t=\frac{40±32}{2}
Do the calculations.
t=36 t=4
Solve the equation t=\frac{40±32}{2} when ± is plus and when ± is minus.
y=6 y=-6 y=2 y=-2
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}