Evaluate
\frac{12}{7}\approx 1.714285714
Factor
\frac{2 ^ {2} \cdot 3}{7} = 1\frac{5}{7} = 1.7142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)144}\\\end{array}
Since 1 is less than 84, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)144}\\\end{array}
Since 14 is less than 84, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{84)}001\phantom{6}\\84\overline{)144}\\\phantom{84)}\underline{\phantom{9}84\phantom{}}\\\phantom{84)9}60\\\end{array}
Find closest multiple of 84 to 144. We see that 1 \times 84 = 84 is the nearest. Now subtract 84 from 144 to get reminder 60. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }60
Since 60 is less than 84, stop the division. The reminder is 60. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}