Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=\frac{144}{169}
Swap sides so that all variable terms are on the left hand side.
r^{2}-\frac{144}{169}=0
Subtract \frac{144}{169} from both sides.
169r^{2}-144=0
Multiply both sides by 169.
\left(13r-12\right)\left(13r+12\right)=0
Consider 169r^{2}-144. Rewrite 169r^{2}-144 as \left(13r\right)^{2}-12^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{12}{13} r=-\frac{12}{13}
To find equation solutions, solve 13r-12=0 and 13r+12=0.
r^{2}=\frac{144}{169}
Swap sides so that all variable terms are on the left hand side.
r=\frac{12}{13} r=-\frac{12}{13}
Take the square root of both sides of the equation.
r^{2}=\frac{144}{169}
Swap sides so that all variable terms are on the left hand side.
r^{2}-\frac{144}{169}=0
Subtract \frac{144}{169} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{144}{169}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{144}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{144}{169}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{\frac{576}{169}}}{2}
Multiply -4 times -\frac{144}{169}.
r=\frac{0±\frac{24}{13}}{2}
Take the square root of \frac{576}{169}.
r=\frac{12}{13}
Now solve the equation r=\frac{0±\frac{24}{13}}{2} when ± is plus.
r=-\frac{12}{13}
Now solve the equation r=\frac{0±\frac{24}{13}}{2} when ± is minus.
r=\frac{12}{13} r=-\frac{12}{13}
The equation is now solved.