Solve for a
a=-\frac{d}{78}-\frac{4b}{13}+\frac{11}{6}
Solve for b
b=-\frac{d}{24}-\frac{13a}{4}+\frac{143}{24}
Share
Copied to clipboard
\frac{143}{144}\times 2=a+\frac{b+\frac{a+\frac{d}{6}}{4}}{3}
Multiply both sides by 2.
143\times 2=144a+48\left(b+\frac{a+\frac{d}{6}}{4}\right)
Multiply both sides of the equation by 144, the least common multiple of 144,3.
286=144a+48\left(b+\frac{a+\frac{d}{6}}{4}\right)
Multiply 143 and 2 to get 286.
286=144a+48b+48\times \frac{a+\frac{d}{6}}{4}
Use the distributive property to multiply 48 by b+\frac{a+\frac{d}{6}}{4}.
144a+48b+48\times \frac{a+\frac{d}{6}}{4}=286
Swap sides so that all variable terms are on the left hand side.
144a+48\times \frac{a+\frac{d}{6}}{4}=286-48b
Subtract 48b from both sides.
576a+48\left(a+\frac{d}{6}\right)=1144-192b
Multiply both sides of the equation by 4.
3456a+288\left(a+\frac{d}{6}\right)=6864-1152b
Multiply both sides of the equation by 6.
3456a+288a+288\times \frac{d}{6}=6864-1152b
Use the distributive property to multiply 288 by a+\frac{d}{6}.
3456a+288a+48d=6864-1152b
Cancel out 6, the greatest common factor in 288 and 6.
3744a+48d=6864-1152b
Combine 3456a and 288a to get 3744a.
3744a=6864-1152b-48d
Subtract 48d from both sides.
3744a=6864-48d-1152b
The equation is in standard form.
\frac{3744a}{3744}=\frac{6864-48d-1152b}{3744}
Divide both sides by 3744.
a=\frac{6864-48d-1152b}{3744}
Dividing by 3744 undoes the multiplication by 3744.
a=-\frac{d}{78}-\frac{4b}{13}+\frac{11}{6}
Divide 6864-1152b-48d by 3744.
\frac{143}{144}\times 2=a+\frac{b+\frac{a+\frac{d}{6}}{4}}{3}
Multiply both sides by 2.
143\times 2=144a+48\left(b+\frac{a+\frac{d}{6}}{4}\right)
Multiply both sides of the equation by 144, the least common multiple of 144,3.
286=144a+48\left(b+\frac{a+\frac{d}{6}}{4}\right)
Multiply 143 and 2 to get 286.
286=144a+48b+48\times \frac{a+\frac{d}{6}}{4}
Use the distributive property to multiply 48 by b+\frac{a+\frac{d}{6}}{4}.
144a+48b+48\times \frac{a+\frac{d}{6}}{4}=286
Swap sides so that all variable terms are on the left hand side.
48b+48\times \frac{a+\frac{d}{6}}{4}=286-144a
Subtract 144a from both sides.
48b=286-144a-48\times \frac{a+\frac{d}{6}}{4}
Subtract 48\times \frac{a+\frac{d}{6}}{4} from both sides.
192b=4\left(286-144a\right)-48\left(a+\frac{d}{6}\right)
Multiply both sides of the equation by 4.
1152b=24\left(286-144a\right)-6\times 48\left(a+\frac{d}{6}\right)
Multiply both sides of the equation by 6.
1152b=6864-3456a-6\times 48\left(a+\frac{d}{6}\right)
Use the distributive property to multiply 24 by 286-144a.
1152b=6864-3456a-288\left(a+\frac{d}{6}\right)
Multiply -6 and 48 to get -288.
1152b=6864-3456a-288a-288\times \frac{d}{6}
Use the distributive property to multiply -288 by a+\frac{d}{6}.
1152b=6864-3456a-288a-48d
Cancel out 6, the greatest common factor in 288 and 6.
1152b=6864-3744a-48d
Combine -3456a and -288a to get -3744a.
1152b=6864-48d-3744a
The equation is in standard form.
\frac{1152b}{1152}=\frac{6864-48d-3744a}{1152}
Divide both sides by 1152.
b=\frac{6864-48d-3744a}{1152}
Dividing by 1152 undoes the multiplication by 1152.
b=-\frac{d}{24}-\frac{13a}{4}+\frac{143}{24}
Divide 6864-3744a-48d by 1152.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}