Evaluate
\frac{140608}{25}=5624.32
Factor
\frac{2 ^ {6} \cdot 13 ^ {3}}{5 ^ {2}} = 5624\frac{8}{25} = 5624.32
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)140608}\\\end{array}
Use the 1^{st} digit 1 from dividend 140608
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)140608}\\\end{array}
Since 1 is less than 25, use the next digit 4 from dividend 140608 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)140608}\\\end{array}
Use the 2^{nd} digit 4 from dividend 140608
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)140608}\\\end{array}
Since 14 is less than 25, use the next digit 0 from dividend 140608 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)140608}\\\end{array}
Use the 3^{rd} digit 0 from dividend 140608
\begin{array}{l}\phantom{25)}005\phantom{6}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}15\\\end{array}
Find closest multiple of 25 to 140. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 140 to get reminder 15. Add 5 to quotient.
\begin{array}{l}\phantom{25)}005\phantom{7}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\end{array}
Use the 4^{th} digit 6 from dividend 140608
\begin{array}{l}\phantom{25)}0056\phantom{8}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\phantom{25)}\underline{\phantom{9}150\phantom{99}}\\\phantom{25)999}6\\\end{array}
Find closest multiple of 25 to 156. We see that 6 \times 25 = 150 is the nearest. Now subtract 150 from 156 to get reminder 6. Add 6 to quotient.
\begin{array}{l}\phantom{25)}0056\phantom{9}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\phantom{25)}\underline{\phantom{9}150\phantom{99}}\\\phantom{25)999}60\\\end{array}
Use the 5^{th} digit 0 from dividend 140608
\begin{array}{l}\phantom{25)}00562\phantom{10}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\phantom{25)}\underline{\phantom{9}150\phantom{99}}\\\phantom{25)999}60\\\phantom{25)}\underline{\phantom{999}50\phantom{9}}\\\phantom{25)999}10\\\end{array}
Find closest multiple of 25 to 60. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 60 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{25)}00562\phantom{11}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\phantom{25)}\underline{\phantom{9}150\phantom{99}}\\\phantom{25)999}60\\\phantom{25)}\underline{\phantom{999}50\phantom{9}}\\\phantom{25)999}108\\\end{array}
Use the 6^{th} digit 8 from dividend 140608
\begin{array}{l}\phantom{25)}005624\phantom{12}\\25\overline{)140608}\\\phantom{25)}\underline{\phantom{}125\phantom{999}}\\\phantom{25)9}156\\\phantom{25)}\underline{\phantom{9}150\phantom{99}}\\\phantom{25)999}60\\\phantom{25)}\underline{\phantom{999}50\phantom{9}}\\\phantom{25)999}108\\\phantom{25)}\underline{\phantom{999}100\phantom{}}\\\phantom{25)99999}8\\\end{array}
Find closest multiple of 25 to 108. We see that 4 \times 25 = 100 is the nearest. Now subtract 100 from 108 to get reminder 8. Add 4 to quotient.
\text{Quotient: }5624 \text{Reminder: }8
Since 8 is less than 25, stop the division. The reminder is 8. The topmost line 005624 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5624.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}