Evaluate
\frac{\left(14b-5\right)\left(b^{2}-2b+4\right)}{b\left(b-2\right)\left(2b+1\right)}
Expand
\frac{14b^{3}-33b^{2}+66b-20}{b\left(b-2\right)\left(2b+1\right)}
Share
Copied to clipboard
\frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Divide \frac{14b^{2}-5b}{2b+1} by \frac{b^{2}+b-2}{b^{3}+8} by multiplying \frac{14b^{2}-5b}{2b+1} by the reciprocal of \frac{b^{2}+b-2}{b^{3}+8}.
\frac{b\left(14b-5\right)\left(b+2\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(b+2\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Factor the expressions that are not already factored in \frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Cancel out b+2 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)\left(b-1\right)}{\left(b-1\right)\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Multiply \frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)} times \frac{b-1}{b^{3}-2b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Cancel out b-1 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-2\right)\left(2b+1\right)b^{2}}
Factor the expressions that are not already factored.
\frac{\left(14b-5\right)\left(b^{2}-2b+4\right)}{b\left(b-2\right)\left(2b+1\right)}
Cancel out b in both numerator and denominator.
\frac{14b^{3}-33b^{2}+66b-20}{2b^{3}-3b^{2}-2b}
Expand the expression.
\frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Divide \frac{14b^{2}-5b}{2b+1} by \frac{b^{2}+b-2}{b^{3}+8} by multiplying \frac{14b^{2}-5b}{2b+1} by the reciprocal of \frac{b^{2}+b-2}{b^{3}+8}.
\frac{b\left(14b-5\right)\left(b+2\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(b+2\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Factor the expressions that are not already factored in \frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Cancel out b+2 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)\left(b-1\right)}{\left(b-1\right)\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Multiply \frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)} times \frac{b-1}{b^{3}-2b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Cancel out b-1 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-2\right)\left(2b+1\right)b^{2}}
Factor the expressions that are not already factored.
\frac{\left(14b-5\right)\left(b^{2}-2b+4\right)}{b\left(b-2\right)\left(2b+1\right)}
Cancel out b in both numerator and denominator.
\frac{14b^{3}-33b^{2}+66b-20}{2b^{3}-3b^{2}-2b}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}