Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Divide \frac{14b^{2}-5b}{2b+1} by \frac{b^{2}+b-2}{b^{3}+8} by multiplying \frac{14b^{2}-5b}{2b+1} by the reciprocal of \frac{b^{2}+b-2}{b^{3}+8}.
\frac{b\left(14b-5\right)\left(b+2\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(b+2\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Factor the expressions that are not already factored in \frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Cancel out b+2 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)\left(b-1\right)}{\left(b-1\right)\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Multiply \frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)} times \frac{b-1}{b^{3}-2b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Cancel out b-1 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-2\right)\left(2b+1\right)b^{2}}
Factor the expressions that are not already factored.
\frac{\left(14b-5\right)\left(b^{2}-2b+4\right)}{b\left(b-2\right)\left(2b+1\right)}
Cancel out b in both numerator and denominator.
\frac{14b^{3}-33b^{2}+66b-20}{2b^{3}-3b^{2}-2b}
Expand the expression.
\frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Divide \frac{14b^{2}-5b}{2b+1} by \frac{b^{2}+b-2}{b^{3}+8} by multiplying \frac{14b^{2}-5b}{2b+1} by the reciprocal of \frac{b^{2}+b-2}{b^{3}+8}.
\frac{b\left(14b-5\right)\left(b+2\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(b+2\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Factor the expressions that are not already factored in \frac{\left(14b^{2}-5b\right)\left(b^{3}+8\right)}{\left(2b+1\right)\left(b^{2}+b-2\right)}.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)}\times \frac{b-1}{b^{3}-2b^{2}}
Cancel out b+2 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)\left(b-1\right)}{\left(b-1\right)\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Multiply \frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-1\right)\left(2b+1\right)} times \frac{b-1}{b^{3}-2b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(2b+1\right)\left(b^{3}-2b^{2}\right)}
Cancel out b-1 in both numerator and denominator.
\frac{b\left(14b-5\right)\left(b^{2}-2b+4\right)}{\left(b-2\right)\left(2b+1\right)b^{2}}
Factor the expressions that are not already factored.
\frac{\left(14b-5\right)\left(b^{2}-2b+4\right)}{b\left(b-2\right)\left(2b+1\right)}
Cancel out b in both numerator and denominator.
\frac{14b^{3}-33b^{2}+66b-20}{2b^{3}-3b^{2}-2b}
Expand the expression.