Evaluate
\frac{6\left(x+4y-7\right)}{\left(x-3\right)\left(x-3y\right)}
Factor
\frac{6\left(x+4y-7\right)}{\left(x-3\right)\left(x-3y\right)}
Share
Copied to clipboard
\frac{14}{x-3y}-\frac{24}{3\left(x-3\right)}
Factor 3x-9.
\frac{14\times 3\left(x-3\right)}{3\left(x-3\right)\left(x-3y\right)}-\frac{24\left(x-3y\right)}{3\left(x-3\right)\left(x-3y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3y and 3\left(x-3\right) is 3\left(x-3\right)\left(x-3y\right). Multiply \frac{14}{x-3y} times \frac{3\left(x-3\right)}{3\left(x-3\right)}. Multiply \frac{24}{3\left(x-3\right)} times \frac{x-3y}{x-3y}.
\frac{14\times 3\left(x-3\right)-24\left(x-3y\right)}{3\left(x-3\right)\left(x-3y\right)}
Since \frac{14\times 3\left(x-3\right)}{3\left(x-3\right)\left(x-3y\right)} and \frac{24\left(x-3y\right)}{3\left(x-3\right)\left(x-3y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{42x-126-24x+72y}{3\left(x-3\right)\left(x-3y\right)}
Do the multiplications in 14\times 3\left(x-3\right)-24\left(x-3y\right).
\frac{18x-126+72y}{3\left(x-3\right)\left(x-3y\right)}
Combine like terms in 42x-126-24x+72y.
\frac{18\left(x+4y-7\right)}{3\left(x-3\right)\left(x-3y\right)}
Factor the expressions that are not already factored in \frac{18x-126+72y}{3\left(x-3\right)\left(x-3y\right)}.
\frac{6\left(x+4y-7\right)}{\left(x-3\right)\left(x-3y\right)}
Cancel out 3 in both numerator and denominator.
\frac{6\left(x+4y-7\right)}{x^{2}-3xy-3x+9y}
Expand \left(x-3\right)\left(x-3y\right).
\frac{6x+24y-42}{x^{2}-3xy-3x+9y}
Use the distributive property to multiply 6 by x+4y-7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}