Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{14}{2\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by 2\sqrt{3}+\sqrt{5}.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{4\times 3-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{12-\left(\sqrt{5}\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{12-5}
The square of \sqrt{5} is 5.
\frac{14\left(2\sqrt{3}+\sqrt{5}\right)}{7}
Subtract 5 from 12 to get 7.
2\left(2\sqrt{3}+\sqrt{5}\right)
Divide 14\left(2\sqrt{3}+\sqrt{5}\right) by 7 to get 2\left(2\sqrt{3}+\sqrt{5}\right).
4\sqrt{3}+2\sqrt{5}
Use the distributive property to multiply 2 by 2\sqrt{3}+\sqrt{5}.