Evaluate
\frac{67}{60}\approx 1.116666667
Factor
\frac{67}{2 ^ {2} \cdot 3 \cdot 5} = 1\frac{7}{60} = 1.1166666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)134}\\\end{array}
Use the 1^{st} digit 1 from dividend 134
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)134}\\\end{array}
Since 1 is less than 120, use the next digit 3 from dividend 134 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)134}\\\end{array}
Use the 2^{nd} digit 3 from dividend 134
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)134}\\\end{array}
Since 13 is less than 120, use the next digit 4 from dividend 134 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)134}\\\end{array}
Use the 3^{rd} digit 4 from dividend 134
\begin{array}{l}\phantom{120)}001\phantom{6}\\120\overline{)134}\\\phantom{120)}\underline{\phantom{}120\phantom{}}\\\phantom{120)9}14\\\end{array}
Find closest multiple of 120 to 134. We see that 1 \times 120 = 120 is the nearest. Now subtract 120 from 134 to get reminder 14. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }14
Since 14 is less than 120, stop the division. The reminder is 14. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}