Evaluate
\frac{221}{165}\approx 1.339393939
Factor
\frac{13 \cdot 17}{3 \cdot 5 \cdot 11} = 1\frac{56}{165} = 1.3393939393939394
Share
Copied to clipboard
\begin{array}{l}\phantom{990)}\phantom{1}\\990\overline{)1326}\\\end{array}
Use the 1^{st} digit 1 from dividend 1326
\begin{array}{l}\phantom{990)}0\phantom{2}\\990\overline{)1326}\\\end{array}
Since 1 is less than 990, use the next digit 3 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{990)}0\phantom{3}\\990\overline{)1326}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1326
\begin{array}{l}\phantom{990)}00\phantom{4}\\990\overline{)1326}\\\end{array}
Since 13 is less than 990, use the next digit 2 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{990)}00\phantom{5}\\990\overline{)1326}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1326
\begin{array}{l}\phantom{990)}000\phantom{6}\\990\overline{)1326}\\\end{array}
Since 132 is less than 990, use the next digit 6 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{990)}000\phantom{7}\\990\overline{)1326}\\\end{array}
Use the 4^{th} digit 6 from dividend 1326
\begin{array}{l}\phantom{990)}0001\phantom{8}\\990\overline{)1326}\\\phantom{990)}\underline{\phantom{9}990\phantom{}}\\\phantom{990)9}336\\\end{array}
Find closest multiple of 990 to 1326. We see that 1 \times 990 = 990 is the nearest. Now subtract 990 from 1326 to get reminder 336. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }336
Since 336 is less than 990, stop the division. The reminder is 336. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}