Evaluate
\frac{91}{10}-\frac{13}{10}i=9.1-1.3i
Real Part
\frac{91}{10} = 9\frac{1}{10} = 9.1
Share
Copied to clipboard
\frac{13\times 1\left(2-i\right)}{3-i}
Calculate i to the power of 4 and get 1.
\frac{13\left(2-i\right)}{3-i}
Multiply 13 and 1 to get 13.
\frac{26-13i}{3-i}
Multiply 13 and 2-i to get 26-13i.
\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{91-13i}{10}
Do the multiplications in \frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{91}{10}-\frac{13}{10}i
Divide 91-13i by 10 to get \frac{91}{10}-\frac{13}{10}i.
Re(\frac{13\times 1\left(2-i\right)}{3-i})
Calculate i to the power of 4 and get 1.
Re(\frac{13\left(2-i\right)}{3-i})
Multiply 13 and 1 to get 13.
Re(\frac{26-13i}{3-i})
Multiply 13 and 2-i to get 26-13i.
Re(\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{26-13i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{91-13i}{10})
Do the multiplications in \frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{91}{10}-\frac{13}{10}i)
Divide 91-13i by 10 to get \frac{91}{10}-\frac{13}{10}i.
\frac{91}{10}
The real part of \frac{91}{10}-\frac{13}{10}i is \frac{91}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}