Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{13\times 1\left(2-i\right)}{3-i}
Calculate i to the power of 4 and get 1.
\frac{13\left(2-i\right)}{3-i}
Multiply 13 and 1 to get 13.
\frac{26-13i}{3-i}
Multiply 13 and 2-i to get 26-13i.
\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{91-13i}{10}
Do the multiplications in \frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{91}{10}-\frac{13}{10}i
Divide 91-13i by 10 to get \frac{91}{10}-\frac{13}{10}i.
Re(\frac{13\times 1\left(2-i\right)}{3-i})
Calculate i to the power of 4 and get 1.
Re(\frac{13\left(2-i\right)}{3-i})
Multiply 13 and 1 to get 13.
Re(\frac{26-13i}{3-i})
Multiply 13 and 2-i to get 26-13i.
Re(\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{26-13i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{91-13i}{10})
Do the multiplications in \frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{91}{10}-\frac{13}{10}i)
Divide 91-13i by 10 to get \frac{91}{10}-\frac{13}{10}i.
\frac{91}{10}
The real part of \frac{91}{10}-\frac{13}{10}i is \frac{91}{10}.