Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
13+24x-8\left(2x+1\right)=48\left(1-\left(\frac{1}{4}-x\right)\left(x+\frac{1}{4}\right)\right)-48\left(x+\frac{1}{2}\right)^{2}
Multiply both sides of the equation by 48, the least common multiple of 48,2,6,4.
13+24x-16x-8=48\left(1-\left(\frac{1}{4}-x\right)\left(x+\frac{1}{4}\right)\right)-48\left(x+\frac{1}{2}\right)^{2}
Use the distributive property to multiply -8 by 2x+1.
13+8x-8=48\left(1-\left(\frac{1}{4}-x\right)\left(x+\frac{1}{4}\right)\right)-48\left(x+\frac{1}{2}\right)^{2}
Combine 24x and -16x to get 8x.
5+8x=48\left(1-\left(\frac{1}{4}-x\right)\left(x+\frac{1}{4}\right)\right)-48\left(x+\frac{1}{2}\right)^{2}
Subtract 8 from 13 to get 5.
5+8x=48\left(1-\left(\frac{1}{16}-x^{2}\right)\right)-48\left(x+\frac{1}{2}\right)^{2}
Consider \left(\frac{1}{4}-x\right)\left(x+\frac{1}{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{4}.
5+8x=48\left(1-\frac{1}{16}+x^{2}\right)-48\left(x+\frac{1}{2}\right)^{2}
To find the opposite of \frac{1}{16}-x^{2}, find the opposite of each term.
5+8x=48\left(\frac{15}{16}+x^{2}\right)-48\left(x+\frac{1}{2}\right)^{2}
Subtract \frac{1}{16} from 1 to get \frac{15}{16}.
5+8x=45+48x^{2}-48\left(x+\frac{1}{2}\right)^{2}
Use the distributive property to multiply 48 by \frac{15}{16}+x^{2}.
5+8x=45+48x^{2}-48\left(x^{2}+x+\frac{1}{4}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{2}\right)^{2}.
5+8x=45+48x^{2}-48x^{2}-48x-12
Use the distributive property to multiply -48 by x^{2}+x+\frac{1}{4}.
5+8x=45-48x-12
Combine 48x^{2} and -48x^{2} to get 0.
5+8x=33-48x
Subtract 12 from 45 to get 33.
5+8x+48x=33
Add 48x to both sides.
5+56x=33
Combine 8x and 48x to get 56x.
56x=33-5
Subtract 5 from both sides.
56x=28
Subtract 5 from 33 to get 28.
x=\frac{28}{56}
Divide both sides by 56.
x=\frac{1}{2}
Reduce the fraction \frac{28}{56} to lowest terms by extracting and canceling out 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}