Evaluate
\frac{199}{140}\approx 1.421428571
Factor
\frac{199}{2 ^ {2} \cdot 5 \cdot 7} = 1\frac{59}{140} = 1.4214285714285715
Share
Copied to clipboard
\frac{91}{140}+\frac{110}{140}+\frac{-5}{7}+\frac{7}{10}
Least common multiple of 20 and 14 is 140. Convert \frac{13}{20} and \frac{11}{14} to fractions with denominator 140.
\frac{91+110}{140}+\frac{-5}{7}+\frac{7}{10}
Since \frac{91}{140} and \frac{110}{140} have the same denominator, add them by adding their numerators.
\frac{201}{140}+\frac{-5}{7}+\frac{7}{10}
Add 91 and 110 to get 201.
\frac{201}{140}-\frac{5}{7}+\frac{7}{10}
Fraction \frac{-5}{7} can be rewritten as -\frac{5}{7} by extracting the negative sign.
\frac{201}{140}-\frac{100}{140}+\frac{7}{10}
Least common multiple of 140 and 7 is 140. Convert \frac{201}{140} and \frac{5}{7} to fractions with denominator 140.
\frac{201-100}{140}+\frac{7}{10}
Since \frac{201}{140} and \frac{100}{140} have the same denominator, subtract them by subtracting their numerators.
\frac{101}{140}+\frac{7}{10}
Subtract 100 from 201 to get 101.
\frac{101}{140}+\frac{98}{140}
Least common multiple of 140 and 10 is 140. Convert \frac{101}{140} and \frac{7}{10} to fractions with denominator 140.
\frac{101+98}{140}
Since \frac{101}{140} and \frac{98}{140} have the same denominator, add them by adding their numerators.
\frac{199}{140}
Add 101 and 98 to get 199.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}