Evaluate
\frac{35}{33}+\frac{39}{2v}
Factor
\frac{70v+1287}{66v}
Share
Copied to clipboard
\frac{13\times 3}{2v}+\frac{7}{66}\times 10
Express \frac{13}{2v}\times 3 as a single fraction.
\frac{13\times 3}{2v}+\frac{7\times 10}{66}
Express \frac{7}{66}\times 10 as a single fraction.
\frac{13\times 3}{2v}+\frac{70}{66}
Multiply 7 and 10 to get 70.
\frac{13\times 3}{2v}+\frac{35}{33}
Reduce the fraction \frac{70}{66} to lowest terms by extracting and canceling out 2.
\frac{33\times 13\times 3}{66v}+\frac{35\times 2v}{66v}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2v and 33 is 66v. Multiply \frac{13\times 3}{2v} times \frac{33}{33}. Multiply \frac{35}{33} times \frac{2v}{2v}.
\frac{33\times 13\times 3+35\times 2v}{66v}
Since \frac{33\times 13\times 3}{66v} and \frac{35\times 2v}{66v} have the same denominator, add them by adding their numerators.
\frac{1287+70v}{66v}
Do the multiplications in 33\times 13\times 3+35\times 2v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}