Evaluate
\frac{171}{169}-\frac{29}{169}i\approx 1.01183432-0.171597633i
Real Part
\frac{171}{169} = 1\frac{2}{169} = 1.0118343195266273
Share
Copied to clipboard
\frac{\left(13+3i\right)\left(12-5i\right)}{\left(12+5i\right)\left(12-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 12-5i.
\frac{\left(13+3i\right)\left(12-5i\right)}{12^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(13+3i\right)\left(12-5i\right)}{169}
By definition, i^{2} is -1. Calculate the denominator.
\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)i^{2}}{169}
Multiply complex numbers 13+3i and 12-5i like you multiply binomials.
\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right)}{169}
By definition, i^{2} is -1.
\frac{156-65i+36i+15}{169}
Do the multiplications in 13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right).
\frac{156+15+\left(-65+36\right)i}{169}
Combine the real and imaginary parts in 156-65i+36i+15.
\frac{171-29i}{169}
Do the additions in 156+15+\left(-65+36\right)i.
\frac{171}{169}-\frac{29}{169}i
Divide 171-29i by 169 to get \frac{171}{169}-\frac{29}{169}i.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{\left(12+5i\right)\left(12-5i\right)})
Multiply both numerator and denominator of \frac{13+3i}{12+5i} by the complex conjugate of the denominator, 12-5i.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{12^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{169})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)i^{2}}{169})
Multiply complex numbers 13+3i and 12-5i like you multiply binomials.
Re(\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right)}{169})
By definition, i^{2} is -1.
Re(\frac{156-65i+36i+15}{169})
Do the multiplications in 13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right).
Re(\frac{156+15+\left(-65+36\right)i}{169})
Combine the real and imaginary parts in 156-65i+36i+15.
Re(\frac{171-29i}{169})
Do the additions in 156+15+\left(-65+36\right)i.
Re(\frac{171}{169}-\frac{29}{169}i)
Divide 171-29i by 169 to get \frac{171}{169}-\frac{29}{169}i.
\frac{171}{169}
The real part of \frac{171}{169}-\frac{29}{169}i is \frac{171}{169}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}