Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(13+3i\right)\left(12-5i\right)}{\left(12+5i\right)\left(12-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 12-5i.
\frac{\left(13+3i\right)\left(12-5i\right)}{12^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(13+3i\right)\left(12-5i\right)}{169}
By definition, i^{2} is -1. Calculate the denominator.
\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)i^{2}}{169}
Multiply complex numbers 13+3i and 12-5i like you multiply binomials.
\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right)}{169}
By definition, i^{2} is -1.
\frac{156-65i+36i+15}{169}
Do the multiplications in 13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right).
\frac{156+15+\left(-65+36\right)i}{169}
Combine the real and imaginary parts in 156-65i+36i+15.
\frac{171-29i}{169}
Do the additions in 156+15+\left(-65+36\right)i.
\frac{171}{169}-\frac{29}{169}i
Divide 171-29i by 169 to get \frac{171}{169}-\frac{29}{169}i.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{\left(12+5i\right)\left(12-5i\right)})
Multiply both numerator and denominator of \frac{13+3i}{12+5i} by the complex conjugate of the denominator, 12-5i.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{12^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(13+3i\right)\left(12-5i\right)}{169})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)i^{2}}{169})
Multiply complex numbers 13+3i and 12-5i like you multiply binomials.
Re(\frac{13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right)}{169})
By definition, i^{2} is -1.
Re(\frac{156-65i+36i+15}{169})
Do the multiplications in 13\times 12+13\times \left(-5i\right)+3i\times 12+3\left(-5\right)\left(-1\right).
Re(\frac{156+15+\left(-65+36\right)i}{169})
Combine the real and imaginary parts in 156-65i+36i+15.
Re(\frac{171-29i}{169})
Do the additions in 156+15+\left(-65+36\right)i.
Re(\frac{171}{169}-\frac{29}{169}i)
Divide 171-29i by 169 to get \frac{171}{169}-\frac{29}{169}i.
\frac{171}{169}
The real part of \frac{171}{169}-\frac{29}{169}i is \frac{171}{169}.