Evaluate
\frac{125}{24}\approx 5.208333333
Factor
\frac{5 ^ {3}}{2 ^ {3} \cdot 3} = 5\frac{5}{24} = 5.208333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)125}\\\end{array}
Since 1 is less than 24, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)125}\\\end{array}
Since 12 is less than 24, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{24)}005\phantom{6}\\24\overline{)125}\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)99}5\\\end{array}
Find closest multiple of 24 to 125. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 125 to get reminder 5. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }5
Since 5 is less than 24, stop the division. The reminder is 5. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}