Evaluate
\frac{20000}{7}\approx 2857.142857143
Factor
\frac{2 ^ {5} \cdot 5 ^ {4}}{7} = 2857\frac{1}{7} = 2857.1428571428573
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)120000}\\\end{array}
Use the 1^{st} digit 1 from dividend 120000
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)120000}\\\end{array}
Since 1 is less than 42, use the next digit 2 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)120000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120000
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)120000}\\\end{array}
Since 12 is less than 42, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)120000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120000
\begin{array}{l}\phantom{42)}002\phantom{6}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}36\\\end{array}
Find closest multiple of 42 to 120. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 120 to get reminder 36. Add 2 to quotient.
\begin{array}{l}\phantom{42)}002\phantom{7}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\end{array}
Use the 4^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{42)}0028\phantom{8}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{99}}\\\phantom{42)99}24\\\end{array}
Find closest multiple of 42 to 360. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 360 to get reminder 24. Add 8 to quotient.
\begin{array}{l}\phantom{42)}0028\phantom{9}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{99}}\\\phantom{42)99}240\\\end{array}
Use the 5^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{42)}00285\phantom{10}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{99}}\\\phantom{42)99}240\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}30\\\end{array}
Find closest multiple of 42 to 240. We see that 5 \times 42 = 210 is the nearest. Now subtract 210 from 240 to get reminder 30. Add 5 to quotient.
\begin{array}{l}\phantom{42)}00285\phantom{11}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{99}}\\\phantom{42)99}240\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}300\\\end{array}
Use the 6^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{42)}002857\phantom{12}\\42\overline{)120000}\\\phantom{42)}\underline{\phantom{9}84\phantom{999}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{99}}\\\phantom{42)99}240\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}300\\\phantom{42)}\underline{\phantom{999}294\phantom{}}\\\phantom{42)99999}6\\\end{array}
Find closest multiple of 42 to 300. We see that 7 \times 42 = 294 is the nearest. Now subtract 294 from 300 to get reminder 6. Add 7 to quotient.
\text{Quotient: }2857 \text{Reminder: }6
Since 6 is less than 42, stop the division. The reminder is 6. The topmost line 002857 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2857.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}