Evaluate
\frac{1200}{187}\approx 6.417112299
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2}}{11 \cdot 17} = 6\frac{78}{187} = 6.4171122994652405
Share
Copied to clipboard
\begin{array}{l}\phantom{187)}\phantom{1}\\187\overline{)1200}\\\end{array}
Use the 1^{st} digit 1 from dividend 1200
\begin{array}{l}\phantom{187)}0\phantom{2}\\187\overline{)1200}\\\end{array}
Since 1 is less than 187, use the next digit 2 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{187)}0\phantom{3}\\187\overline{)1200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1200
\begin{array}{l}\phantom{187)}00\phantom{4}\\187\overline{)1200}\\\end{array}
Since 12 is less than 187, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{187)}00\phantom{5}\\187\overline{)1200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1200
\begin{array}{l}\phantom{187)}000\phantom{6}\\187\overline{)1200}\\\end{array}
Since 120 is less than 187, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{187)}000\phantom{7}\\187\overline{)1200}\\\end{array}
Use the 4^{th} digit 0 from dividend 1200
\begin{array}{l}\phantom{187)}0006\phantom{8}\\187\overline{)1200}\\\phantom{187)}\underline{\phantom{}1122\phantom{}}\\\phantom{187)99}78\\\end{array}
Find closest multiple of 187 to 1200. We see that 6 \times 187 = 1122 is the nearest. Now subtract 1122 from 1200 to get reminder 78. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }78
Since 78 is less than 187, stop the division. The reminder is 78. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}