Evaluate
\frac{1200}{151}\approx 7.947019868
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2}}{151} = 7\frac{143}{151} = 7.947019867549669
Share
Copied to clipboard
\begin{array}{l}\phantom{151)}\phantom{1}\\151\overline{)1200}\\\end{array}
Use the 1^{st} digit 1 from dividend 1200
\begin{array}{l}\phantom{151)}0\phantom{2}\\151\overline{)1200}\\\end{array}
Since 1 is less than 151, use the next digit 2 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{151)}0\phantom{3}\\151\overline{)1200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1200
\begin{array}{l}\phantom{151)}00\phantom{4}\\151\overline{)1200}\\\end{array}
Since 12 is less than 151, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{151)}00\phantom{5}\\151\overline{)1200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1200
\begin{array}{l}\phantom{151)}000\phantom{6}\\151\overline{)1200}\\\end{array}
Since 120 is less than 151, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{151)}000\phantom{7}\\151\overline{)1200}\\\end{array}
Use the 4^{th} digit 0 from dividend 1200
\begin{array}{l}\phantom{151)}0007\phantom{8}\\151\overline{)1200}\\\phantom{151)}\underline{\phantom{}1057\phantom{}}\\\phantom{151)9}143\\\end{array}
Find closest multiple of 151 to 1200. We see that 7 \times 151 = 1057 is the nearest. Now subtract 1057 from 1200 to get reminder 143. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }143
Since 143 is less than 151, stop the division. The reminder is 143. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}