\frac { 1200 } { 100 ( 1 + 40 \% ) } = \frac { 1200 } { 100 } = 2
Verify
false
Quiz
Arithmetic
5 problems similar to:
\frac { 1200 } { 100 ( 1 + 40 \% ) } = \frac { 1200 } { 100 } = 2
Share
Copied to clipboard
\frac{1200}{100\left(1+\frac{2}{5}\right)}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{1200}{100\left(\frac{5}{5}+\frac{2}{5}\right)}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Convert 1 to fraction \frac{5}{5}.
\frac{1200}{100\times \frac{5+2}{5}}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Since \frac{5}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{1200}{100\times \frac{7}{5}}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Add 5 and 2 to get 7.
\frac{1200}{\frac{100\times 7}{5}}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Express 100\times \frac{7}{5} as a single fraction.
\frac{1200}{\frac{700}{5}}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Multiply 100 and 7 to get 700.
\frac{1200}{140}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Divide 700 by 5 to get 140.
\frac{60}{7}=\frac{1200}{100}\text{ and }\frac{1200}{100}=2
Reduce the fraction \frac{1200}{140} to lowest terms by extracting and canceling out 20.
\frac{60}{7}=12\text{ and }\frac{1200}{100}=2
Divide 1200 by 100 to get 12.
\frac{60}{7}=\frac{84}{7}\text{ and }\frac{1200}{100}=2
Convert 12 to fraction \frac{84}{7}.
\text{false}\text{ and }\frac{1200}{100}=2
Compare \frac{60}{7} and \frac{84}{7}.
\text{false}\text{ and }12=2
Divide 1200 by 100 to get 12.
\text{false}\text{ and }\text{false}
Compare 12 and 2.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}