Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12=xx+x\left(-4\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
12=x^{2}+x\left(-4\right)
Multiply x and x to get x^{2}.
x^{2}+x\left(-4\right)=12
Swap sides so that all variable terms are on the left hand side.
x^{2}+x\left(-4\right)-12=0
Subtract 12 from both sides.
x^{2}-4x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Multiply -4 times -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Add 16 to 48.
x=\frac{-\left(-4\right)±8}{2}
Take the square root of 64.
x=\frac{4±8}{2}
The opposite of -4 is 4.
x=\frac{12}{2}
Now solve the equation x=\frac{4±8}{2} when ± is plus. Add 4 to 8.
x=6
Divide 12 by 2.
x=-\frac{4}{2}
Now solve the equation x=\frac{4±8}{2} when ± is minus. Subtract 8 from 4.
x=-2
Divide -4 by 2.
x=6 x=-2
The equation is now solved.
12=xx+x\left(-4\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
12=x^{2}+x\left(-4\right)
Multiply x and x to get x^{2}.
x^{2}+x\left(-4\right)=12
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=12+4
Square -2.
x^{2}-4x+4=16
Add 12 to 4.
\left(x-2\right)^{2}=16
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-2=4 x-2=-4
Simplify.
x=6 x=-2
Add 2 to both sides of the equation.