Solve for x
x = -\frac{303}{35} = -8\frac{23}{35} \approx -8.657142857
Graph
Share
Copied to clipboard
\frac{24}{14}+\frac{3}{14}-\frac{5}{6}x=\frac{128}{14}
Least common multiple of 7 and 14 is 14. Convert \frac{12}{7} and \frac{3}{14} to fractions with denominator 14.
\frac{24+3}{14}-\frac{5}{6}x=\frac{128}{14}
Since \frac{24}{14} and \frac{3}{14} have the same denominator, add them by adding their numerators.
\frac{27}{14}-\frac{5}{6}x=\frac{128}{14}
Add 24 and 3 to get 27.
\frac{27}{14}-\frac{5}{6}x=\frac{64}{7}
Reduce the fraction \frac{128}{14} to lowest terms by extracting and canceling out 2.
-\frac{5}{6}x=\frac{64}{7}-\frac{27}{14}
Subtract \frac{27}{14} from both sides.
-\frac{5}{6}x=\frac{128}{14}-\frac{27}{14}
Least common multiple of 7 and 14 is 14. Convert \frac{64}{7} and \frac{27}{14} to fractions with denominator 14.
-\frac{5}{6}x=\frac{128-27}{14}
Since \frac{128}{14} and \frac{27}{14} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{6}x=\frac{101}{14}
Subtract 27 from 128 to get 101.
x=\frac{101}{14}\left(-\frac{6}{5}\right)
Multiply both sides by -\frac{6}{5}, the reciprocal of -\frac{5}{6}.
x=\frac{101\left(-6\right)}{14\times 5}
Multiply \frac{101}{14} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-606}{70}
Do the multiplications in the fraction \frac{101\left(-6\right)}{14\times 5}.
x=-\frac{303}{35}
Reduce the fraction \frac{-606}{70} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}