Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\frac{12}{5}-\frac{\frac{10}{9}-\frac{1}{3}\left(\frac{5}{4}+\frac{4}{4}\right)-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{12}{5}-\frac{\frac{10}{9}-\frac{1}{3}\times \frac{5+4}{4}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Since \frac{5}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{12}{5}-\frac{\frac{10}{9}-\frac{1}{3}\times \frac{9}{4}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Add 5 and 4 to get 9.
\frac{12}{5}-\frac{\frac{10}{9}-\frac{1\times 9}{3\times 4}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Multiply \frac{1}{3} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}-\frac{\frac{10}{9}-\frac{9}{12}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Do the multiplications in the fraction \frac{1\times 9}{3\times 4}.
\frac{12}{5}-\frac{\frac{10}{9}-\frac{3}{4}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{12}{5}-\frac{\frac{40}{36}-\frac{27}{36}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Least common multiple of 9 and 4 is 36. Convert \frac{10}{9} and \frac{3}{4} to fractions with denominator 36.
\frac{12}{5}-\frac{\frac{40-27}{36}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Since \frac{40}{36} and \frac{27}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}-\frac{\frac{13}{36}-\frac{1}{3}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Subtract 27 from 40 to get 13.
\frac{12}{5}-\frac{\frac{13}{36}-\frac{12}{36}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Least common multiple of 36 and 3 is 36. Convert \frac{13}{36} and \frac{1}{3} to fractions with denominator 36.
\frac{12}{5}-\frac{\frac{13-12}{36}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Since \frac{13}{36} and \frac{12}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+1\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Subtract 12 from 13 to get 1.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{2}{5}\left(\frac{1}{9}+\frac{9}{9}\right)-\frac{11}{12}}\left(-\frac{33}{10}\right)
Convert 1 to fraction \frac{9}{9}.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{2}{5}\times \frac{1+9}{9}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Since \frac{1}{9} and \frac{9}{9} have the same denominator, add them by adding their numerators.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{2}{5}\times \frac{10}{9}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Add 1 and 9 to get 10.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{2\times 10}{5\times 9}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Multiply \frac{2}{5} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{20}{45}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Do the multiplications in the fraction \frac{2\times 10}{5\times 9}.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{1}{6}+\frac{4}{9}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Reduce the fraction \frac{20}{45} to lowest terms by extracting and canceling out 5.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{3}{18}+\frac{8}{18}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Least common multiple of 6 and 9 is 18. Convert \frac{1}{6} and \frac{4}{9} to fractions with denominator 18.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{3+8}{18}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Since \frac{3}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{11}{18}-\frac{11}{12}}\left(-\frac{33}{10}\right)
Add 3 and 8 to get 11.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{22}{36}-\frac{33}{36}}\left(-\frac{33}{10}\right)
Least common multiple of 18 and 12 is 36. Convert \frac{11}{18} and \frac{11}{12} to fractions with denominator 36.
\frac{12}{5}-\frac{\frac{1}{36}}{\frac{22-33}{36}}\left(-\frac{33}{10}\right)
Since \frac{22}{36} and \frac{33}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}-\frac{\frac{1}{36}}{-\frac{11}{36}}\left(-\frac{33}{10}\right)
Subtract 33 from 22 to get -11.
\frac{12}{5}-\frac{1}{36}\left(-\frac{36}{11}\right)\left(-\frac{33}{10}\right)
Divide \frac{1}{36} by -\frac{11}{36} by multiplying \frac{1}{36} by the reciprocal of -\frac{11}{36}.
\frac{12}{5}-\frac{1\left(-36\right)}{36\times 11}\left(-\frac{33}{10}\right)
Multiply \frac{1}{36} times -\frac{36}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}-\frac{-36}{396}\left(-\frac{33}{10}\right)
Do the multiplications in the fraction \frac{1\left(-36\right)}{36\times 11}.
\frac{12}{5}-\left(-\frac{1}{11}\left(-\frac{33}{10}\right)\right)
Reduce the fraction \frac{-36}{396} to lowest terms by extracting and canceling out 36.
\frac{12}{5}-\frac{-\left(-33\right)}{11\times 10}
Multiply -\frac{1}{11} times -\frac{33}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}-\frac{33}{110}
Do the multiplications in the fraction \frac{-\left(-33\right)}{11\times 10}.
\frac{12}{5}-\frac{3}{10}
Reduce the fraction \frac{33}{110} to lowest terms by extracting and canceling out 11.
\frac{24}{10}-\frac{3}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{12}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{24-3}{10}
Since \frac{24}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{10}
Subtract 3 from 24 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}