Solve for m
m = \frac{\sqrt{43921} + 201}{10} \approx 41.057337617
m=\frac{201-\sqrt{43921}}{10}\approx -0.857337617
Share
Copied to clipboard
60m\times 12+\left(4m+44\right)\times 12=15m\left(m+11\right)
Variable m cannot be equal to any of the values -11,0 since division by zero is not defined. Multiply both sides of the equation by 60m\left(m+11\right), the least common multiple of 11+m,15m,4.
720m+\left(4m+44\right)\times 12=15m\left(m+11\right)
Multiply 60 and 12 to get 720.
720m+48m+528=15m\left(m+11\right)
Use the distributive property to multiply 4m+44 by 12.
768m+528=15m\left(m+11\right)
Combine 720m and 48m to get 768m.
768m+528=15m^{2}+165m
Use the distributive property to multiply 15m by m+11.
768m+528-15m^{2}=165m
Subtract 15m^{2} from both sides.
768m+528-15m^{2}-165m=0
Subtract 165m from both sides.
603m+528-15m^{2}=0
Combine 768m and -165m to get 603m.
-15m^{2}+603m+528=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-603±\sqrt{603^{2}-4\left(-15\right)\times 528}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 603 for b, and 528 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-603±\sqrt{363609-4\left(-15\right)\times 528}}{2\left(-15\right)}
Square 603.
m=\frac{-603±\sqrt{363609+60\times 528}}{2\left(-15\right)}
Multiply -4 times -15.
m=\frac{-603±\sqrt{363609+31680}}{2\left(-15\right)}
Multiply 60 times 528.
m=\frac{-603±\sqrt{395289}}{2\left(-15\right)}
Add 363609 to 31680.
m=\frac{-603±3\sqrt{43921}}{2\left(-15\right)}
Take the square root of 395289.
m=\frac{-603±3\sqrt{43921}}{-30}
Multiply 2 times -15.
m=\frac{3\sqrt{43921}-603}{-30}
Now solve the equation m=\frac{-603±3\sqrt{43921}}{-30} when ± is plus. Add -603 to 3\sqrt{43921}.
m=\frac{201-\sqrt{43921}}{10}
Divide -603+3\sqrt{43921} by -30.
m=\frac{-3\sqrt{43921}-603}{-30}
Now solve the equation m=\frac{-603±3\sqrt{43921}}{-30} when ± is minus. Subtract 3\sqrt{43921} from -603.
m=\frac{\sqrt{43921}+201}{10}
Divide -603-3\sqrt{43921} by -30.
m=\frac{201-\sqrt{43921}}{10} m=\frac{\sqrt{43921}+201}{10}
The equation is now solved.
60m\times 12+\left(4m+44\right)\times 12=15m\left(m+11\right)
Variable m cannot be equal to any of the values -11,0 since division by zero is not defined. Multiply both sides of the equation by 60m\left(m+11\right), the least common multiple of 11+m,15m,4.
720m+\left(4m+44\right)\times 12=15m\left(m+11\right)
Multiply 60 and 12 to get 720.
720m+48m+528=15m\left(m+11\right)
Use the distributive property to multiply 4m+44 by 12.
768m+528=15m\left(m+11\right)
Combine 720m and 48m to get 768m.
768m+528=15m^{2}+165m
Use the distributive property to multiply 15m by m+11.
768m+528-15m^{2}=165m
Subtract 15m^{2} from both sides.
768m+528-15m^{2}-165m=0
Subtract 165m from both sides.
603m+528-15m^{2}=0
Combine 768m and -165m to get 603m.
603m-15m^{2}=-528
Subtract 528 from both sides. Anything subtracted from zero gives its negation.
-15m^{2}+603m=-528
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15m^{2}+603m}{-15}=-\frac{528}{-15}
Divide both sides by -15.
m^{2}+\frac{603}{-15}m=-\frac{528}{-15}
Dividing by -15 undoes the multiplication by -15.
m^{2}-\frac{201}{5}m=-\frac{528}{-15}
Reduce the fraction \frac{603}{-15} to lowest terms by extracting and canceling out 3.
m^{2}-\frac{201}{5}m=\frac{176}{5}
Reduce the fraction \frac{-528}{-15} to lowest terms by extracting and canceling out 3.
m^{2}-\frac{201}{5}m+\left(-\frac{201}{10}\right)^{2}=\frac{176}{5}+\left(-\frac{201}{10}\right)^{2}
Divide -\frac{201}{5}, the coefficient of the x term, by 2 to get -\frac{201}{10}. Then add the square of -\frac{201}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{201}{5}m+\frac{40401}{100}=\frac{176}{5}+\frac{40401}{100}
Square -\frac{201}{10} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{201}{5}m+\frac{40401}{100}=\frac{43921}{100}
Add \frac{176}{5} to \frac{40401}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{201}{10}\right)^{2}=\frac{43921}{100}
Factor m^{2}-\frac{201}{5}m+\frac{40401}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{201}{10}\right)^{2}}=\sqrt{\frac{43921}{100}}
Take the square root of both sides of the equation.
m-\frac{201}{10}=\frac{\sqrt{43921}}{10} m-\frac{201}{10}=-\frac{\sqrt{43921}}{10}
Simplify.
m=\frac{\sqrt{43921}+201}{10} m=\frac{201-\sqrt{43921}}{10}
Add \frac{201}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}