Solve for x
x = -\frac{32}{23} = -1\frac{9}{23} \approx -1.391304348
Graph
Share
Copied to clipboard
-3\left(12+x\right)=4\left(5x-7\right)+24
Multiply both sides of the equation by 12, the least common multiple of -4,3.
-36-3x=4\left(5x-7\right)+24
Use the distributive property to multiply -3 by 12+x.
-36-3x=20x-28+24
Use the distributive property to multiply 4 by 5x-7.
-36-3x=20x-4
Add -28 and 24 to get -4.
-36-3x-20x=-4
Subtract 20x from both sides.
-36-23x=-4
Combine -3x and -20x to get -23x.
-23x=-4+36
Add 36 to both sides.
-23x=32
Add -4 and 36 to get 32.
x=\frac{32}{-23}
Divide both sides by -23.
x=-\frac{32}{23}
Fraction \frac{32}{-23} can be rewritten as -\frac{32}{23} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}