Evaluate
\frac{20\sqrt{5}}{13}\approx 3.440104581
Share
Copied to clipboard
\frac{10}{\frac{13}{\sqrt{20}}}
Subtract 109 from 119 to get 10.
\frac{10}{\frac{13}{2\sqrt{5}}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{10}{\frac{13\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{13}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{10}{\frac{13\sqrt{5}}{2\times 5}}
The square of \sqrt{5} is 5.
\frac{10}{\frac{13\sqrt{5}}{10}}
Multiply 2 and 5 to get 10.
\frac{10\times 10}{13\sqrt{5}}
Divide 10 by \frac{13\sqrt{5}}{10} by multiplying 10 by the reciprocal of \frac{13\sqrt{5}}{10}.
\frac{10\times 10\sqrt{5}}{13\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{10\times 10}{13\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{10\times 10\sqrt{5}}{13\times 5}
The square of \sqrt{5} is 5.
\frac{100\sqrt{5}}{13\times 5}
Multiply 10 and 10 to get 100.
\frac{100\sqrt{5}}{65}
Multiply 13 and 5 to get 65.
\frac{20}{13}\sqrt{5}
Divide 100\sqrt{5} by 65 to get \frac{20}{13}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}