Evaluate
\frac{119}{48}\approx 2.479166667
Factor
\frac{7 \cdot 17}{2 ^ {4} \cdot 3} = 2\frac{23}{48} = 2.4791666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)119}\\\end{array}
Use the 1^{st} digit 1 from dividend 119
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)119}\\\end{array}
Since 1 is less than 48, use the next digit 1 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)119}\\\end{array}
Use the 2^{nd} digit 1 from dividend 119
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)119}\\\end{array}
Since 11 is less than 48, use the next digit 9 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)119}\\\end{array}
Use the 3^{rd} digit 9 from dividend 119
\begin{array}{l}\phantom{48)}002\phantom{6}\\48\overline{)119}\\\phantom{48)}\underline{\phantom{9}96\phantom{}}\\\phantom{48)9}23\\\end{array}
Find closest multiple of 48 to 119. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 119 to get reminder 23. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }23
Since 23 is less than 48, stop the division. The reminder is 23. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}