Evaluate
\frac{115}{72}\approx 1.597222222
Factor
\frac{5 \cdot 23}{2 ^ {3} \cdot 3 ^ {2}} = 1\frac{43}{72} = 1.5972222222222223
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)115}\\\end{array}
Use the 1^{st} digit 1 from dividend 115
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)115}\\\end{array}
Since 1 is less than 72, use the next digit 1 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)115}\\\end{array}
Use the 2^{nd} digit 1 from dividend 115
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)115}\\\end{array}
Since 11 is less than 72, use the next digit 5 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)115}\\\end{array}
Use the 3^{rd} digit 5 from dividend 115
\begin{array}{l}\phantom{72)}001\phantom{6}\\72\overline{)115}\\\phantom{72)}\underline{\phantom{9}72\phantom{}}\\\phantom{72)9}43\\\end{array}
Find closest multiple of 72 to 115. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 115 to get reminder 43. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }43
Since 43 is less than 72, stop the division. The reminder is 43. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}