Evaluate
\frac{2790612}{1295}\approx 2154.912741313
Factor
\frac{2 ^ {2} \cdot 3 ^ {7} \cdot 11 \cdot 29}{5 \cdot 7 \cdot 37} = 2154\frac{1182}{1295} = 2154.912741312741
Share
Copied to clipboard
\begin{array}{l}\phantom{518000)}\phantom{1}\\518000\overline{)1116244800}\\\end{array}
Use the 1^{st} digit 1 from dividend 1116244800
\begin{array}{l}\phantom{518000)}0\phantom{2}\\518000\overline{)1116244800}\\\end{array}
Since 1 is less than 518000, use the next digit 1 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}0\phantom{3}\\518000\overline{)1116244800}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1116244800
\begin{array}{l}\phantom{518000)}00\phantom{4}\\518000\overline{)1116244800}\\\end{array}
Since 11 is less than 518000, use the next digit 1 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}00\phantom{5}\\518000\overline{)1116244800}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1116244800
\begin{array}{l}\phantom{518000)}000\phantom{6}\\518000\overline{)1116244800}\\\end{array}
Since 111 is less than 518000, use the next digit 6 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}000\phantom{7}\\518000\overline{)1116244800}\\\end{array}
Use the 4^{th} digit 6 from dividend 1116244800
\begin{array}{l}\phantom{518000)}0000\phantom{8}\\518000\overline{)1116244800}\\\end{array}
Since 1116 is less than 518000, use the next digit 2 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}0000\phantom{9}\\518000\overline{)1116244800}\\\end{array}
Use the 5^{th} digit 2 from dividend 1116244800
\begin{array}{l}\phantom{518000)}00000\phantom{10}\\518000\overline{)1116244800}\\\end{array}
Since 11162 is less than 518000, use the next digit 4 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}00000\phantom{11}\\518000\overline{)1116244800}\\\end{array}
Use the 6^{th} digit 4 from dividend 1116244800
\begin{array}{l}\phantom{518000)}000000\phantom{12}\\518000\overline{)1116244800}\\\end{array}
Since 111624 is less than 518000, use the next digit 4 from dividend 1116244800 and add 0 to the quotient
\begin{array}{l}\phantom{518000)}000000\phantom{13}\\518000\overline{)1116244800}\\\end{array}
Use the 7^{th} digit 4 from dividend 1116244800
\begin{array}{l}\phantom{518000)}0000002\phantom{14}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}80244\\\end{array}
Find closest multiple of 518000 to 1116244. We see that 2 \times 518000 = 1036000 is the nearest. Now subtract 1036000 from 1116244 to get reminder 80244. Add 2 to quotient.
\begin{array}{l}\phantom{518000)}0000002\phantom{15}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\end{array}
Use the 8^{th} digit 8 from dividend 1116244800
\begin{array}{l}\phantom{518000)}00000021\phantom{16}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\phantom{518000)}\underline{\phantom{99}518000\phantom{99}}\\\phantom{518000)99}284448\\\end{array}
Find closest multiple of 518000 to 802448. We see that 1 \times 518000 = 518000 is the nearest. Now subtract 518000 from 802448 to get reminder 284448. Add 1 to quotient.
\begin{array}{l}\phantom{518000)}00000021\phantom{17}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\phantom{518000)}\underline{\phantom{99}518000\phantom{99}}\\\phantom{518000)99}2844480\\\end{array}
Use the 9^{th} digit 0 from dividend 1116244800
\begin{array}{l}\phantom{518000)}000000215\phantom{18}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\phantom{518000)}\underline{\phantom{99}518000\phantom{99}}\\\phantom{518000)99}2844480\\\phantom{518000)}\underline{\phantom{99}2590000\phantom{9}}\\\phantom{518000)999}254480\\\end{array}
Find closest multiple of 518000 to 2844480. We see that 5 \times 518000 = 2590000 is the nearest. Now subtract 2590000 from 2844480 to get reminder 254480. Add 5 to quotient.
\begin{array}{l}\phantom{518000)}000000215\phantom{19}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\phantom{518000)}\underline{\phantom{99}518000\phantom{99}}\\\phantom{518000)99}2844480\\\phantom{518000)}\underline{\phantom{99}2590000\phantom{9}}\\\phantom{518000)999}2544800\\\end{array}
Use the 10^{th} digit 0 from dividend 1116244800
\begin{array}{l}\phantom{518000)}0000002154\phantom{20}\\518000\overline{)1116244800}\\\phantom{518000)}\underline{\phantom{}1036000\phantom{999}}\\\phantom{518000)99}802448\\\phantom{518000)}\underline{\phantom{99}518000\phantom{99}}\\\phantom{518000)99}2844480\\\phantom{518000)}\underline{\phantom{99}2590000\phantom{9}}\\\phantom{518000)999}2544800\\\phantom{518000)}\underline{\phantom{999}2072000\phantom{}}\\\phantom{518000)9999}472800\\\end{array}
Find closest multiple of 518000 to 2544800. We see that 4 \times 518000 = 2072000 is the nearest. Now subtract 2072000 from 2544800 to get reminder 472800. Add 4 to quotient.
\text{Quotient: }2154 \text{Reminder: }472800
Since 472800 is less than 518000, stop the division. The reminder is 472800. The topmost line 0000002154 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2154.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}