Evaluate
\frac{37}{34}\approx 1.088235294
Factor
\frac{37}{2 \cdot 17} = 1\frac{3}{34} = 1.088235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{102)}\phantom{1}\\102\overline{)111}\\\end{array}
Use the 1^{st} digit 1 from dividend 111
\begin{array}{l}\phantom{102)}0\phantom{2}\\102\overline{)111}\\\end{array}
Since 1 is less than 102, use the next digit 1 from dividend 111 and add 0 to the quotient
\begin{array}{l}\phantom{102)}0\phantom{3}\\102\overline{)111}\\\end{array}
Use the 2^{nd} digit 1 from dividend 111
\begin{array}{l}\phantom{102)}00\phantom{4}\\102\overline{)111}\\\end{array}
Since 11 is less than 102, use the next digit 1 from dividend 111 and add 0 to the quotient
\begin{array}{l}\phantom{102)}00\phantom{5}\\102\overline{)111}\\\end{array}
Use the 3^{rd} digit 1 from dividend 111
\begin{array}{l}\phantom{102)}001\phantom{6}\\102\overline{)111}\\\phantom{102)}\underline{\phantom{}102\phantom{}}\\\phantom{102)99}9\\\end{array}
Find closest multiple of 102 to 111. We see that 1 \times 102 = 102 is the nearest. Now subtract 102 from 111 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 102, stop the division. The reminder is 9. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}