Solve for x
x=\frac{2}{5}=0.4
Graph
Share
Copied to clipboard
2\left(11x+3\right)+11\left(x-1\right)+3\left(x-3\right)=6-2\times 2\left(x+1\right)
Multiply both sides of the equation by 22, the least common multiple of 11,2,22.
22x+6+11\left(x-1\right)+3\left(x-3\right)=6-2\times 2\left(x+1\right)
Use the distributive property to multiply 2 by 11x+3.
22x+6+11x-11+3\left(x-3\right)=6-2\times 2\left(x+1\right)
Use the distributive property to multiply 11 by x-1.
33x+6-11+3\left(x-3\right)=6-2\times 2\left(x+1\right)
Combine 22x and 11x to get 33x.
33x-5+3\left(x-3\right)=6-2\times 2\left(x+1\right)
Subtract 11 from 6 to get -5.
33x-5+3x-9=6-2\times 2\left(x+1\right)
Use the distributive property to multiply 3 by x-3.
36x-5-9=6-2\times 2\left(x+1\right)
Combine 33x and 3x to get 36x.
36x-14=6-2\times 2\left(x+1\right)
Subtract 9 from -5 to get -14.
36x-14=6-4\left(x+1\right)
Multiply -2 and 2 to get -4.
36x-14=6-4x-4
Use the distributive property to multiply -4 by x+1.
36x-14=2-4x
Subtract 4 from 6 to get 2.
36x-14+4x=2
Add 4x to both sides.
40x-14=2
Combine 36x and 4x to get 40x.
40x=2+14
Add 14 to both sides.
40x=16
Add 2 and 14 to get 16.
x=\frac{16}{40}
Divide both sides by 40.
x=\frac{2}{5}
Reduce the fraction \frac{16}{40} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}