Verify
false
Share
Copied to clipboard
3\left(11\times \frac{23}{11}-1\right)=7\left(7\times \frac{23}{14}+10\right)
Multiply both sides of the equation by 42, the least common multiple of 14,6.
3\left(23-1\right)=7\left(7\times \frac{23}{14}+10\right)
Cancel out 11 and 11.
3\times 22=7\left(7\times \frac{23}{14}+10\right)
Subtract 1 from 23 to get 22.
66=7\left(7\times \frac{23}{14}+10\right)
Multiply 3 and 22 to get 66.
66=7\left(\frac{7\times 23}{14}+10\right)
Express 7\times \frac{23}{14} as a single fraction.
66=7\left(\frac{161}{14}+10\right)
Multiply 7 and 23 to get 161.
66=7\left(\frac{23}{2}+10\right)
Reduce the fraction \frac{161}{14} to lowest terms by extracting and canceling out 7.
66=7\left(\frac{23}{2}+\frac{20}{2}\right)
Convert 10 to fraction \frac{20}{2}.
66=7\times \frac{23+20}{2}
Since \frac{23}{2} and \frac{20}{2} have the same denominator, add them by adding their numerators.
66=7\times \frac{43}{2}
Add 23 and 20 to get 43.
66=\frac{7\times 43}{2}
Express 7\times \frac{43}{2} as a single fraction.
66=\frac{301}{2}
Multiply 7 and 43 to get 301.
\frac{132}{2}=\frac{301}{2}
Convert 66 to fraction \frac{132}{2}.
\text{false}
Compare \frac{132}{2} and \frac{301}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}