Solve for x
x=657
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 11 } { 9 } x + \frac { 4 } { 7 } ( 1000 - x ) = 999
Share
Copied to clipboard
\frac{11}{9}x+\frac{4}{7}\times 1000+\frac{4}{7}\left(-1\right)x=999
Use the distributive property to multiply \frac{4}{7} by 1000-x.
\frac{11}{9}x+\frac{4\times 1000}{7}+\frac{4}{7}\left(-1\right)x=999
Express \frac{4}{7}\times 1000 as a single fraction.
\frac{11}{9}x+\frac{4000}{7}+\frac{4}{7}\left(-1\right)x=999
Multiply 4 and 1000 to get 4000.
\frac{11}{9}x+\frac{4000}{7}-\frac{4}{7}x=999
Multiply \frac{4}{7} and -1 to get -\frac{4}{7}.
\frac{41}{63}x+\frac{4000}{7}=999
Combine \frac{11}{9}x and -\frac{4}{7}x to get \frac{41}{63}x.
\frac{41}{63}x=999-\frac{4000}{7}
Subtract \frac{4000}{7} from both sides.
\frac{41}{63}x=\frac{6993}{7}-\frac{4000}{7}
Convert 999 to fraction \frac{6993}{7}.
\frac{41}{63}x=\frac{6993-4000}{7}
Since \frac{6993}{7} and \frac{4000}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{63}x=\frac{2993}{7}
Subtract 4000 from 6993 to get 2993.
x=\frac{2993}{7}\times \frac{63}{41}
Multiply both sides by \frac{63}{41}, the reciprocal of \frac{41}{63}.
x=\frac{2993\times 63}{7\times 41}
Multiply \frac{2993}{7} times \frac{63}{41} by multiplying numerator times numerator and denominator times denominator.
x=\frac{188559}{287}
Do the multiplications in the fraction \frac{2993\times 63}{7\times 41}.
x=657
Divide 188559 by 287 to get 657.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}