Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{11}{13}\times 8}{\left(\frac{5}{8}+\frac{3}{4}\right)\times 3}
Divide \frac{\frac{11}{13}}{\frac{5}{8}+\frac{3}{4}} by \frac{3}{8} by multiplying \frac{\frac{11}{13}}{\frac{5}{8}+\frac{3}{4}} by the reciprocal of \frac{3}{8}.
\frac{\frac{11\times 8}{13}}{\left(\frac{5}{8}+\frac{3}{4}\right)\times 3}
Express \frac{11}{13}\times 8 as a single fraction.
\frac{\frac{88}{13}}{\left(\frac{5}{8}+\frac{3}{4}\right)\times 3}
Multiply 11 and 8 to get 88.
\frac{\frac{88}{13}}{\left(\frac{5}{8}+\frac{6}{8}\right)\times 3}
Least common multiple of 8 and 4 is 8. Convert \frac{5}{8} and \frac{3}{4} to fractions with denominator 8.
\frac{\frac{88}{13}}{\frac{5+6}{8}\times 3}
Since \frac{5}{8} and \frac{6}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{88}{13}}{\frac{11}{8}\times 3}
Add 5 and 6 to get 11.
\frac{\frac{88}{13}}{\frac{11\times 3}{8}}
Express \frac{11}{8}\times 3 as a single fraction.
\frac{\frac{88}{13}}{\frac{33}{8}}
Multiply 11 and 3 to get 33.
\frac{88}{13}\times \frac{8}{33}
Divide \frac{88}{13} by \frac{33}{8} by multiplying \frac{88}{13} by the reciprocal of \frac{33}{8}.
\frac{88\times 8}{13\times 33}
Multiply \frac{88}{13} times \frac{8}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{704}{429}
Do the multiplications in the fraction \frac{88\times 8}{13\times 33}.
\frac{64}{39}
Reduce the fraction \frac{704}{429} to lowest terms by extracting and canceling out 11.