Evaluate
\frac{5}{13}\approx 0.384615385
Factor
\frac{5}{13} = 0.38461538461538464
Share
Copied to clipboard
\frac{11\times \frac{5}{8}}{13\left(\frac{5}{8}+\frac{3}{4}\right)}
Divide \frac{11}{13} by \frac{\frac{5}{8}+\frac{3}{4}}{\frac{5}{8}} by multiplying \frac{11}{13} by the reciprocal of \frac{\frac{5}{8}+\frac{3}{4}}{\frac{5}{8}}.
\frac{\frac{11\times 5}{8}}{13\left(\frac{5}{8}+\frac{3}{4}\right)}
Express 11\times \frac{5}{8} as a single fraction.
\frac{\frac{55}{8}}{13\left(\frac{5}{8}+\frac{3}{4}\right)}
Multiply 11 and 5 to get 55.
\frac{\frac{55}{8}}{13\left(\frac{5}{8}+\frac{6}{8}\right)}
Least common multiple of 8 and 4 is 8. Convert \frac{5}{8} and \frac{3}{4} to fractions with denominator 8.
\frac{\frac{55}{8}}{13\times \frac{5+6}{8}}
Since \frac{5}{8} and \frac{6}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{55}{8}}{13\times \frac{11}{8}}
Add 5 and 6 to get 11.
\frac{\frac{55}{8}}{\frac{13\times 11}{8}}
Express 13\times \frac{11}{8} as a single fraction.
\frac{\frac{55}{8}}{\frac{143}{8}}
Multiply 13 and 11 to get 143.
\frac{55}{8}\times \frac{8}{143}
Divide \frac{55}{8} by \frac{143}{8} by multiplying \frac{55}{8} by the reciprocal of \frac{143}{8}.
\frac{55\times 8}{8\times 143}
Multiply \frac{55}{8} times \frac{8}{143} by multiplying numerator times numerator and denominator times denominator.
\frac{55}{143}
Cancel out 8 in both numerator and denominator.
\frac{5}{13}
Reduce the fraction \frac{55}{143} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}