Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(11+2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}=x
Multiply both numerator and denominator of \frac{11+2i}{4-i} by the complex conjugate of the denominator, 4+i.
\frac{\left(11+2i\right)\left(4+i\right)}{4^{2}-i^{2}}=x
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11+2i\right)\left(4+i\right)}{17}=x
By definition, i^{2} is -1. Calculate the denominator.
\frac{11\times 4+11i+2i\times 4+2i^{2}}{17}=x
Multiply complex numbers 11+2i and 4+i like you multiply binomials.
\frac{11\times 4+11i+2i\times 4+2\left(-1\right)}{17}=x
By definition, i^{2} is -1.
\frac{44+11i+8i-2}{17}=x
Do the multiplications in 11\times 4+11i+2i\times 4+2\left(-1\right).
\frac{44-2+\left(11+8\right)i}{17}=x
Combine the real and imaginary parts in 44+11i+8i-2.
\frac{42+19i}{17}=x
Do the additions in 44-2+\left(11+8\right)i.
\frac{42}{17}+\frac{19}{17}i=x
Divide 42+19i by 17 to get \frac{42}{17}+\frac{19}{17}i.
x=\frac{42}{17}+\frac{19}{17}i
Swap sides so that all variable terms are on the left hand side.