Solve for x
x=\frac{42}{17}+\frac{19}{17}i\approx 2.470588235+1.117647059i
Share
Copied to clipboard
\frac{\left(11+2i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}=x
Multiply both numerator and denominator of \frac{11+2i}{4-i} by the complex conjugate of the denominator, 4+i.
\frac{\left(11+2i\right)\left(4+i\right)}{4^{2}-i^{2}}=x
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11+2i\right)\left(4+i\right)}{17}=x
By definition, i^{2} is -1. Calculate the denominator.
\frac{11\times 4+11i+2i\times 4+2i^{2}}{17}=x
Multiply complex numbers 11+2i and 4+i like you multiply binomials.
\frac{11\times 4+11i+2i\times 4+2\left(-1\right)}{17}=x
By definition, i^{2} is -1.
\frac{44+11i+8i-2}{17}=x
Do the multiplications in 11\times 4+11i+2i\times 4+2\left(-1\right).
\frac{44-2+\left(11+8\right)i}{17}=x
Combine the real and imaginary parts in 44+11i+8i-2.
\frac{42+19i}{17}=x
Do the additions in 44-2+\left(11+8\right)i.
\frac{42}{17}+\frac{19}{17}i=x
Divide 42+19i by 17 to get \frac{42}{17}+\frac{19}{17}i.
x=\frac{42}{17}+\frac{19}{17}i
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}