Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3-i\right)\left(-3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+i.
\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11+17i\right)\left(-3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{11\left(-3\right)+11i+17i\left(-3\right)+17i^{2}}{10}
Multiply complex numbers 11+17i and -3+i like you multiply binomials.
\frac{11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{-33+11i-51i-17}{10}
Do the multiplications in 11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right).
\frac{-33-17+\left(11-51\right)i}{10}
Combine the real and imaginary parts in -33+11i-51i-17.
\frac{-50-40i}{10}
Do the additions in -33-17+\left(11-51\right)i.
-5-4i
Divide -50-40i by 10 to get -5-4i.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3-i\right)\left(-3+i\right)})
Multiply both numerator and denominator of \frac{11+17i}{-3-i} by the complex conjugate of the denominator, -3+i.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{\left(-3\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(11+17i\right)\left(-3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{11\left(-3\right)+11i+17i\left(-3\right)+17i^{2}}{10})
Multiply complex numbers 11+17i and -3+i like you multiply binomials.
Re(\frac{11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{-33+11i-51i-17}{10})
Do the multiplications in 11\left(-3\right)+11i+17i\left(-3\right)+17\left(-1\right).
Re(\frac{-33-17+\left(11-51\right)i}{10})
Combine the real and imaginary parts in -33+11i-51i-17.
Re(\frac{-50-40i}{10})
Do the additions in -33-17+\left(11-51\right)i.
Re(-5-4i)
Divide -50-40i by 10 to get -5-4i.
-5
The real part of -5-4i is -5.