Evaluate
\frac{91}{25}=3.64
Factor
\frac{7 \cdot 13}{5 ^ {2}} = 3\frac{16}{25} = 3.64
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)1092}\\\end{array}
Use the 1^{st} digit 1 from dividend 1092
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)1092}\\\end{array}
Since 1 is less than 300, use the next digit 0 from dividend 1092 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)1092}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1092
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)1092}\\\end{array}
Since 10 is less than 300, use the next digit 9 from dividend 1092 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)1092}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1092
\begin{array}{l}\phantom{300)}000\phantom{6}\\300\overline{)1092}\\\end{array}
Since 109 is less than 300, use the next digit 2 from dividend 1092 and add 0 to the quotient
\begin{array}{l}\phantom{300)}000\phantom{7}\\300\overline{)1092}\\\end{array}
Use the 4^{th} digit 2 from dividend 1092
\begin{array}{l}\phantom{300)}0003\phantom{8}\\300\overline{)1092}\\\phantom{300)}\underline{\phantom{9}900\phantom{}}\\\phantom{300)9}192\\\end{array}
Find closest multiple of 300 to 1092. We see that 3 \times 300 = 900 is the nearest. Now subtract 900 from 1092 to get reminder 192. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }192
Since 192 is less than 300, stop the division. The reminder is 192. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}