Evaluate
\frac{108}{17}\approx 6.352941176
Factor
\frac{2 ^ {2} \cdot 3 ^ {3}}{17} = 6\frac{6}{17} = 6.352941176470588
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)108}\\\end{array}
Use the 1^{st} digit 1 from dividend 108
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)108}\\\end{array}
Since 1 is less than 17, use the next digit 0 from dividend 108 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)108}\\\end{array}
Use the 2^{nd} digit 0 from dividend 108
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)108}\\\end{array}
Since 10 is less than 17, use the next digit 8 from dividend 108 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)108}\\\end{array}
Use the 3^{rd} digit 8 from dividend 108
\begin{array}{l}\phantom{17)}006\phantom{6}\\17\overline{)108}\\\phantom{17)}\underline{\phantom{}102\phantom{}}\\\phantom{17)99}6\\\end{array}
Find closest multiple of 17 to 108. We see that 6 \times 17 = 102 is the nearest. Now subtract 102 from 108 to get reminder 6. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }6
Since 6 is less than 17, stop the division. The reminder is 6. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}