Evaluate
\frac{107321}{19}\approx 5648.473684211
Factor
\frac{17 \cdot 59 \cdot 107}{19} = 5648\frac{9}{19} = 5648.473684210527
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)107321}\\\end{array}
Use the 1^{st} digit 1 from dividend 107321
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)107321}\\\end{array}
Since 1 is less than 19, use the next digit 0 from dividend 107321 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)107321}\\\end{array}
Use the 2^{nd} digit 0 from dividend 107321
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)107321}\\\end{array}
Since 10 is less than 19, use the next digit 7 from dividend 107321 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)107321}\\\end{array}
Use the 3^{rd} digit 7 from dividend 107321
\begin{array}{l}\phantom{19)}005\phantom{6}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}12\\\end{array}
Find closest multiple of 19 to 107. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 107 to get reminder 12. Add 5 to quotient.
\begin{array}{l}\phantom{19)}005\phantom{7}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\end{array}
Use the 4^{th} digit 3 from dividend 107321
\begin{array}{l}\phantom{19)}0056\phantom{8}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\phantom{19)}\underline{\phantom{9}114\phantom{99}}\\\phantom{19)999}9\\\end{array}
Find closest multiple of 19 to 123. We see that 6 \times 19 = 114 is the nearest. Now subtract 114 from 123 to get reminder 9. Add 6 to quotient.
\begin{array}{l}\phantom{19)}0056\phantom{9}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\phantom{19)}\underline{\phantom{9}114\phantom{99}}\\\phantom{19)999}92\\\end{array}
Use the 5^{th} digit 2 from dividend 107321
\begin{array}{l}\phantom{19)}00564\phantom{10}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\phantom{19)}\underline{\phantom{9}114\phantom{99}}\\\phantom{19)999}92\\\phantom{19)}\underline{\phantom{999}76\phantom{9}}\\\phantom{19)999}16\\\end{array}
Find closest multiple of 19 to 92. We see that 4 \times 19 = 76 is the nearest. Now subtract 76 from 92 to get reminder 16. Add 4 to quotient.
\begin{array}{l}\phantom{19)}00564\phantom{11}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\phantom{19)}\underline{\phantom{9}114\phantom{99}}\\\phantom{19)999}92\\\phantom{19)}\underline{\phantom{999}76\phantom{9}}\\\phantom{19)999}161\\\end{array}
Use the 6^{th} digit 1 from dividend 107321
\begin{array}{l}\phantom{19)}005648\phantom{12}\\19\overline{)107321}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)9}123\\\phantom{19)}\underline{\phantom{9}114\phantom{99}}\\\phantom{19)999}92\\\phantom{19)}\underline{\phantom{999}76\phantom{9}}\\\phantom{19)999}161\\\phantom{19)}\underline{\phantom{999}152\phantom{}}\\\phantom{19)99999}9\\\end{array}
Find closest multiple of 19 to 161. We see that 8 \times 19 = 152 is the nearest. Now subtract 152 from 161 to get reminder 9. Add 8 to quotient.
\text{Quotient: }5648 \text{Reminder: }9
Since 9 is less than 19, stop the division. The reminder is 9. The topmost line 005648 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5648.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}