Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{698)}\phantom{1}\\698\overline{)1047}\\\end{array}
Use the 1^{st} digit 1 from dividend 1047
\begin{array}{l}\phantom{698)}0\phantom{2}\\698\overline{)1047}\\\end{array}
Since 1 is less than 698, use the next digit 0 from dividend 1047 and add 0 to the quotient
\begin{array}{l}\phantom{698)}0\phantom{3}\\698\overline{)1047}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1047
\begin{array}{l}\phantom{698)}00\phantom{4}\\698\overline{)1047}\\\end{array}
Since 10 is less than 698, use the next digit 4 from dividend 1047 and add 0 to the quotient
\begin{array}{l}\phantom{698)}00\phantom{5}\\698\overline{)1047}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1047
\begin{array}{l}\phantom{698)}000\phantom{6}\\698\overline{)1047}\\\end{array}
Since 104 is less than 698, use the next digit 7 from dividend 1047 and add 0 to the quotient
\begin{array}{l}\phantom{698)}000\phantom{7}\\698\overline{)1047}\\\end{array}
Use the 4^{th} digit 7 from dividend 1047
\begin{array}{l}\phantom{698)}0001\phantom{8}\\698\overline{)1047}\\\phantom{698)}\underline{\phantom{9}698\phantom{}}\\\phantom{698)9}349\\\end{array}
Find closest multiple of 698 to 1047. We see that 1 \times 698 = 698 is the nearest. Now subtract 698 from 1047 to get reminder 349. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }349
Since 349 is less than 698, stop the division. The reminder is 349. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}