Evaluate
\frac{103}{18}\approx 5.722222222
Factor
\frac{103}{2 \cdot 3 ^ {2}} = 5\frac{13}{18} = 5.722222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)103}\\\end{array}
Use the 1^{st} digit 1 from dividend 103
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)103}\\\end{array}
Since 1 is less than 18, use the next digit 0 from dividend 103 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)103}\\\end{array}
Use the 2^{nd} digit 0 from dividend 103
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)103}\\\end{array}
Since 10 is less than 18, use the next digit 3 from dividend 103 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)103}\\\end{array}
Use the 3^{rd} digit 3 from dividend 103
\begin{array}{l}\phantom{18)}005\phantom{6}\\18\overline{)103}\\\phantom{18)}\underline{\phantom{9}90\phantom{}}\\\phantom{18)9}13\\\end{array}
Find closest multiple of 18 to 103. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 103 to get reminder 13. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }13
Since 13 is less than 18, stop the division. The reminder is 13. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}